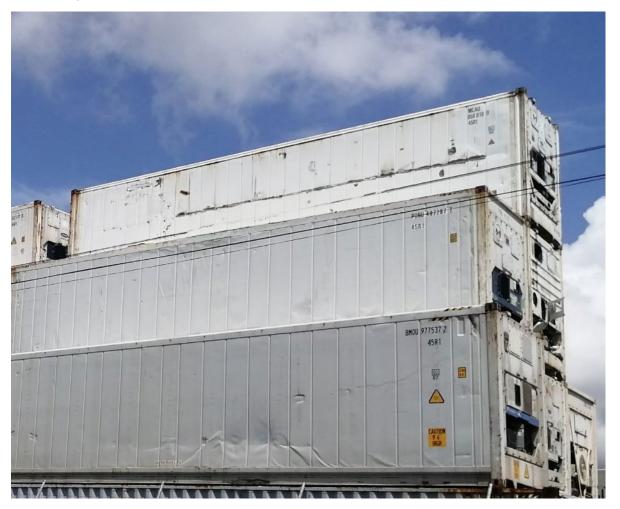
Greener Reefers - introducing climate and environmentally friendly maritime cooling containers

Implemented by



Greener Reefers – introducing climate and environmentally friendly maritime cooling containers

Sunday, 10th December 2023, 2:00 pm – 3:00 pm (GST/UTC+4) | Ozone to Cool Zone (Montreal Protocol Pavilion)

Opening (5')	Philipp Denzinger, GIZ Proklima
Environmental impact and mitigation potential of greener reefers (10')	Philipp Denzinger, GIZ Proklima
How to transition to sustainable reefers (10')	Otto Schacht, Kühne Foundation
Energy efficient and climate friendly refrigeration systems (10')	Kristina Norne Widell, SINTEF
Q & A (10')	Everyone

Our Speakers

Moderator: Philipp Denzinger, GIZ Proklima

Philipp Denzinger

GIZ Proklima

Otto Schacht

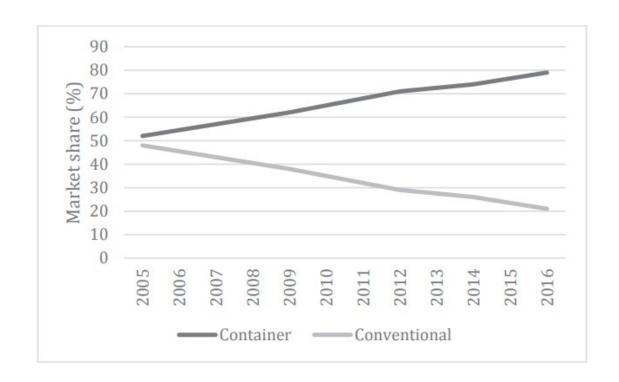
Kühne Foundation

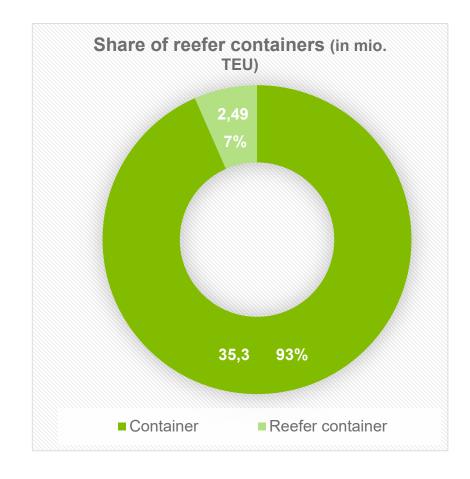
Kristina Norne Widell

SINTEF

Environmental impact and mitigation potential of greener reefers

Philipp Denzinger, GIZ Proklima




Implemented by

Background: Refrigerated Containers Reefers

- 2.49 million reefers in 2018 with a growth rate between 7,5% to 13% up to 2030.
- Market share of reefer containers vs reefer ships has increased steadily to 80% and it is expected to keep growing.

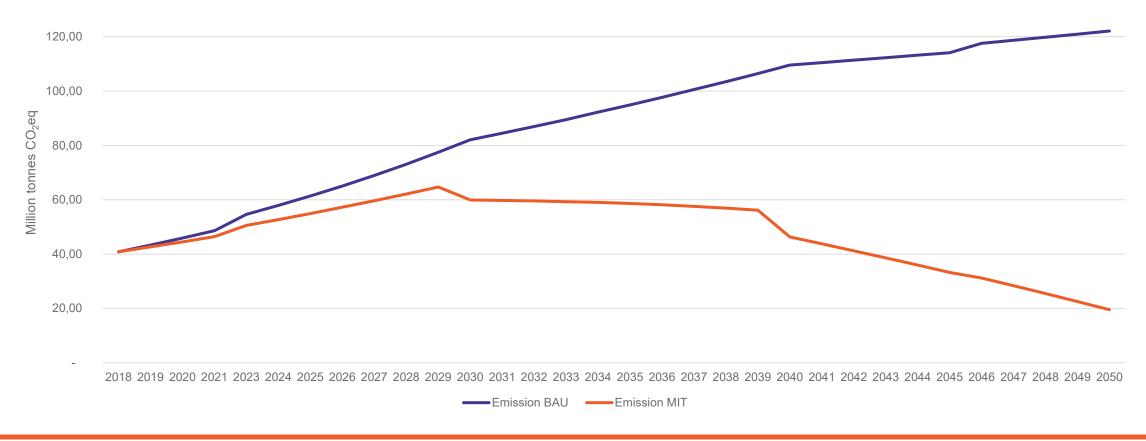
Sources: International Maritime Organization, 2022: Fourth IMO GHG Study 2020 Executive Summary & World Shipping Council, 2020

Sources:

Background: GHG emissions from container vessels

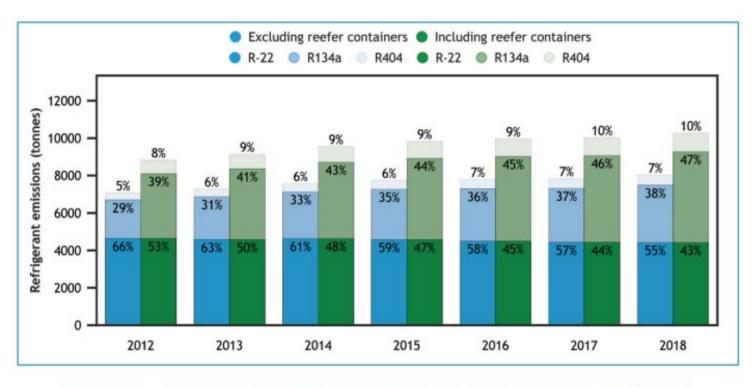
Size category	Unit	Number of vessels			Avg.	Avg.	Avg.	Avg.	Avg. days	Avg.	Avg.	Avg.		Avg. consumption (kt)*			Total GHG	Total CO ₂
		Type 1 and 2	Туре 3	Type 4	(tonnes)	main engine power (kW)	design speed (kn)	days at sea*	international	days in SECA*	SOG at sea* (kn)	distance sailed* (nm)	AER	Main	Aux.	Boiler	emissions (in million tonnes CO ₂ e)	emissions (in million tonnes)
0-999	teu	861	165	1	8,438	5,077	16.0	196	163	43	11.8	55,998	23.9	2.6	0.7	0.4	10.2	10.0
1000-1999	teu	1,271	0	0	19,051	12,083	19.0	210	270	30	13.4	68,141	17.2	5.1	1.5	0.4	28.5	28.0
2000-2999	teu	668	0	0	34,894	20,630	21.1	220	275	24	14.2	75,381	11.4	7.9	1.5	0.6	21.2	20.9
3000-4999	teu	815	0	0	52,372	34,559	23.1	246	271	29	14.7	87,456	10.3	12.7	2.4	0.5	40.1	39.4
5000-7999	teu	561	0	0	74,661	52,566	24.6	258	280	39	15.7	97,500	9.8	20.3	2.4	0.5	41.3	40.7
8000-11999	teu	623	0	0	110,782	57,901	23.9	261	301	38	16.3	102,600	8.3	26.4	2.9	0.5	58.8	57.9
12000-14499	teu	227	0	0	149,023	61,231	23.8	246	297	33	16.3	96,501	6.8	27.2	3.3	0.6	22.3	22.0
14500-19999	teu	101	0	0	179,871	60,202	20.2	250	309	51	16.5	99,770	5.4	26.7	3.7	0.6	9.9	9.7
20000-+	teu	44	0	0	195,615	60,210	20.3	210	292	43	16.3	82,534	5.3	21.0	3.6	0.9	3.5	3.5

Total annual emissions: 236 million tonnes of CO₂eq. in 2018


IMO, "Fourth IMO Greenhouse Gas study", 2020.

Estimated indirect Reefer emissions (BAU) & mitigation potential (MIT)

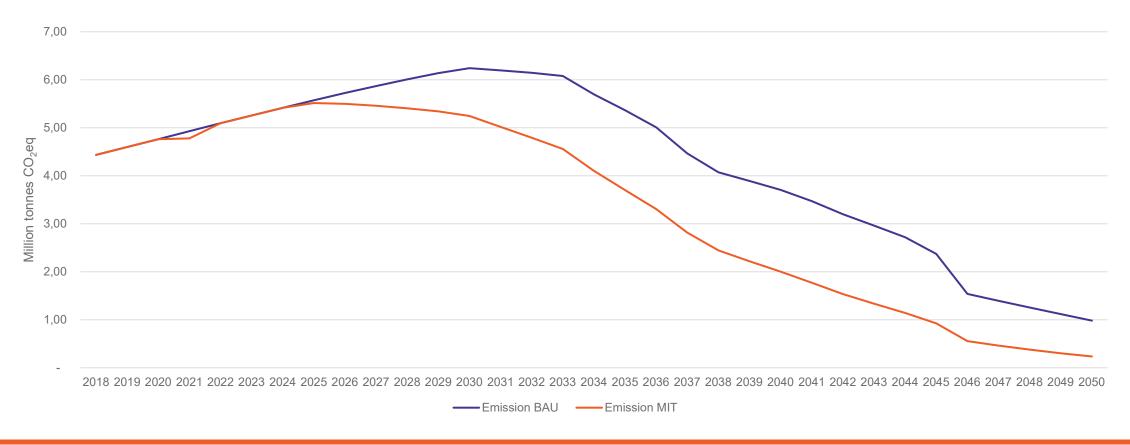
Annual estimated indirect emissions in 2018: 41 million tonnes of CO₂eq. Estimated BAU scenario (including small energy efficiency improvements) Accumulated estimated mitigation potential: 908 million tonnes of CO₂eq. until 2050



Direct emissions from Reefers

- Refrigerant emissions have been increasing in recent years
- Mainly due to an increase in number of reefer containers
- According to IMO (2020) in 2018 direct emissions of reefers are 4 million tonnes of of CO₂eq. (AR4)
- Direct emissions according to AR6 GWP values, would be 4.86 million tonnes of CO₂eq.

Figure 60 – Estimated refrigerant emissions of the global fleet, showing both totals when including and excluding reefer containers


Source: International Maritime Organization, 2022: Fourth IMO GHG Study 2020 Full Report, p82

Estimated direct Reefer emissions (BAU) & mitigation potential (MIT)

Annual estimated direct emissions in 2018: 4.8 million tonnes of CO₂eq Estimated BAU scenario: including low GWP HFCs and HFOs (Accumulated estimated mitigation potential: 32 million tonnes of CO₂eq until 2050 (moving gradually to natural refrigerants)

Background: Refrigerants available for potential use in Reefers

Refrigerant	Type	Alternative for	GWP 20	GWP 100	PFAS	TFA		
R23	HFC		12400	14600	No	No		
R404A	HFC blend		7208	4728	Yes	Up to 20% R134a (4%), up to 10% R143a (52%)		
R452A	HFC/HFO blend	R404A	4303	2292	Yes	Up to 100% R1234yf (30%)		
R473A	HFC/HFO/CO ₂ blend	R23	1915	1835	Yes (R125)	No		
R134a	HFC		4140	1530	Yes	Up to 20% R134a (100%)		
R32	HFC		2690	771	No	No		
R513A	HFC/HFO blend	R134a	1823	673	Yes	Up to 20% R134a (44%), up to 100% R1234yf (56%)		
R454A	HFC/HFO blend	R404A	1037	270	Yes	Up to 100% R1234yf (65%)		
R1234yf	HFO	R134a / R513A	1.81	0.501	Yes	Up to R1234yf (100%)		
R744	Natural (CO ₂)		1	1	No	No		
R290	Natural (Propane)		0.072	0.02	No	No		

Per- and polyfluoroalkyl substances (PFAS) are a large class of synthetic chemicals that increasingly detected as environmental pollutants and linked to negative effects on human health. **Trifluoroacetic acid (TFA)** is an ultra short chain type of PFAS, commonly found in the breakdown of f-gases.

Background: Political Context for Reefers Today

EU F Gas Regulation

and REACH

Limiting the total

amount of F-gases

(HFCs) that can be sold

- Banning the use of Fgases for reefers from 2029 onwards (tbc)
- **Proposal for restriction** on PFAS under REACH

Kigali Amendment

The **Kigali Amendment** under the Montreal Protocol phases down HFCs (e.g., R-134a, R-404A, R-32) on a global scale up to 2047.

UNFCCC process

- Paris Agreement: Global temperature to limit the increase to 1.5 °C
- Establishment of the **National Determined** Contributions
- COP 28: Cooling Pledge

EU legislation to control F-gases (europa.eu)

IMO Strategy 2023

- Reduction of the total annual GHG emissions from international shipping by 20%-30% by 2030
- By 70%-80% by 2040 compared to 2008.
- **Net zero** by or around 2050

Definition of Greener Reefers

Greener Reefers are highly energy efficient refrigerated maritime containers that use natural refrigerants and blowing agents with ultra-low climate impact with less than 11 GWP value and do not contain f-gases and are PFAS-free.

Reefer containers. © GIZ Proklima

Natural refrigerants are the future

- Only two natural options exist that fulfil the sustainable criteria of Greener Reefers:
 - CO2 (already exists)
 - R290 (requires demonstration)
- R290 shows excellent thermodynamic properties (high critical temperature, low freezing temperature, high thermal conductivity, and low viscosity)
- R290 provides excellent energy efficiency at mid temperature applications (\sim 0°C) and low temperature (\sim -20°C)
- Risks of R290 when used in marine container environment is higher from when used on land
- R290 is flammable and therefore requires risk mitigation measures (higher costs) and certified technicians. However, an ISO 20854 (2019) safety standard already exists
- Relevant regulations (IMO) also need to be aligned to use R290 on ships

Source Microsoft Picture

Thermal containers — Safety standard for refrigerating systems using flammable refrigerants Requirements for design and operation

Greener Reefers Project

Comissioned by

based on a decision of the German Bundestag

Implemented by

Project Duration April 2023 until April 2026

Project Budget

EUR 2.900.000

Source Microsoft Picture

Greener Reefers Project

Stakeholders:

- Maritime organisations addressing climate change
- Shipping industry: container manufactures, shipping lines, port terminals
- Research institutions
- Training institutions
- Representatives of IMO, Montreal Protocol, UNFCCC

Partner countries:

- Costa Rica (Ministry of Environment and Energy, Ministry of Public Education, National Institute for Learning)
- South Africa (Department of Forestry, Fisheries and the Environment)

Outputs of the Greener Reefers Project

Reefer market and technologies

Capacity development regarding reefers

Preparation of enabling environment for climate friendly reefers incl. Eco label

Dissemination of mitigation strategies

Do you want to be part or support the Greener Reefers Project? If so please contact us!

OZONE COOL *ZONE 30 Nov-12 Dec COP28 UAE

Philipp Denzinger

Proklima International Project Manager

philipp.denzinger@giz.de

www.green-cooling-initiative.org

How to transition to sustainable reefers

Otto Schacht, Kühne Foundation

How to catalyze the transition to sustainable reefers?

Wholistic perspective

- Refrigerants
- Box design
- Temperature protocols
- Load factors
- Cost but "costs" need to be put into broader perspective (cost per unit cargo, cost to consumer, relative to other climate costs)

Communication

- Do cargo owners know about high GWP of current refrigerants?
- Do they know about the "forever chemicals"?
- Be transparent

Source MSC

How to catalyze the transition to sustainable reefers?

Broad Alliance

- Manufacturers, logistics service providers, shipping lines
- + Cargo owners, consumers
- + Certification bodies
- + Training agencies

Take care of the secondary effects

- Recycling of containers (techniques, business models etc.)
- End of life management of refrigerants

Looking ahead to the low carbon society of 2050

- Reefer demand in a changing climate?
 - More extreme temperatures
 - Longer seasons
- Mode shift from high carbon aviation?
- Different trade flows
 - More trade in low carbon products
 - Different routes

....the low carbon society of 2050 will be very different from that of today – **get ready** - its only 26 years away

OZONE COOL *ZONE 30 Nov-12 Dec COP28 UAE

Otto Schacht

Advisor Kühne Foundation

climate@kühne-foundation.org

www.kuehne-stiftung.org/areas/climate/area

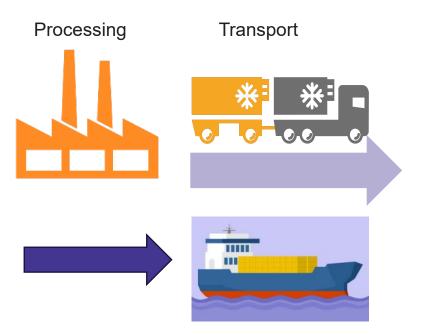
Energy efficient and climate friendly refrigeration systems

OZONE COOL *ZONE 30 Nov-12 Dec COP28 UAE

Kristina N. Widell

Senior Researcher, SINTEF Ocean

Energy efficient and climate friendly refrigeration systems



Food cold chain

60% of all food

Refrigeration systems necessary

- Keep product quality high
- Efficient use of resources
- Low emissions

3 degree report

1/3 of food produced is lost

- Freezing of food
 - Extend storage life
 - Maintain nutritional quality and prevent deterioration
 - Optimise utilisation (scheduled consumption and reduce food waste)

Processing and packaging

Refrigeration reefer containers: 50% cooling 50% freezing

Three Degrees Of Change

FROZEN FOOD IN A RESILIENT AND SUSTAINABLE FOOD SYSTEM

Summary report & initial findings
November 2023

International Institute of Refrigeratio Centre for Sustainable Cooling

3 degree report

- Changing from -18°C to -15°C for frozen storage
 - Reducing energy demand
 - 2-3% per 1 °C
 - Industry case: up to 10%
 - Reducing carbon emissions
 - Equivalent to carbon emitted by nearly 4 million cars/yr.
 - Reefers: propulsion system (fossil fuel)

Three Degrees Of Change

FROZEN FOOD IN A RESILIENT AND SUSTAINABLE FOOD SYSTEM

Summary report & initial findings November 2023

International Institute of Hefrigeration Centre for Sustainable Cooling

How should we do this?

- Keep product quality high
- Efficient use of resources
- Low emissions

Refrigerants

Safety

Energy efficiency

Energy demand

Refrigerants: when do we have a problem?

- Refrigerants leaking
 - Production
 - Filling, servicing
 - Components malfunctioning
 - End-of-life-treatment

- ODP: Ozone depletion potential (R22)
- GWP: Global warming potential (R134a)
- PFAS: Environmental and health risks («HFOs»)

Solution:

Natural Refrigerants

No unexpected surprises (€ £ \$...)

Reefers

- Information supplied by the COA Reefer Forum Work Group
- Overview of current and proposed regulations that restrict the use of refrigerant F-Gases and the consequential issues
- R134a is used in 96% of the existing reefer container fleet
- No immediately available alternative refrigerant that meets all the required operational criteria

COA
TG-08
REEFER
CONTAINERS:
PEGULATORY
JES
CONCERNING
REFRIGERANT
F-GASES

Reefers

- Regulation of F-gas refrigerants overview
 - EU regulation, IMO resolution, REACH etc
- Reefer container global fleet & operating criteria
 - Global shipments of perishable refrigerated cargo were 307 million tonnes in 2022
 - The operating life of a marine reefer container is 18 years.
 - Operate in ambient temperatures varying from -30 °C to +50 °C
- Refrigerant options
 - R1234yf
 - R744 / CO₂
 - R290 / Propane

COA TG-08 REEFER CONTAINERS: REGULATORY ISSUES CONCERNING REFRIGERANT F-GASES

How should we do this?

- Keep product quality high
- Efficient use of resources
- Low emissions

Refrigerants

Safety

Energy efficiency

Safety: important messages

- Following standards, guidelines and codes of good practice has reduced the number of accidents
- Some accidents happen when technicians are not properly trained and informed

How should we do this?

- Keep product quality high
- Efficient use of resources
- Low emissions

Refrigerants

Safety

Energy efficiency

Energy efficiency: why so important?

- Energy savings
 - Reduction in energy demand: spend less to get the same result
- Lower environmental impact
 - Reduction in greenhouse gases and other pollutants
- Energy security
 - Less dependency on imported energy

- Reduced energy costs
 - Increased economy competitiveness and job creation

Summary

R&D Collaboration

- Food is essential: Food cold chain
- Refrigerants: Natural working fluids
- Safety: Good practice, training and education
- Energy:
 - Reduce energy demand
 - Prevent food loss and waste

Q & A

30 Nov-12 Dec COP28 UAE

- MONTREAL PROTOCOL
- **►** ADVANCING
- * CLIMATE ACTION

COP28 UAE 30 Nov-12 Dec

Thank you for listening!